2,075 research outputs found

    Quinoline-based molecules targeting c-Met, EGF, and VEGF receptors and the proteins involved in related carcinogenic pathways

    Get PDF
    The quinoline ring system has long been known as a versatile nucleus in the design and synthesis of biologically active compounds. Currently, more than one hundred quinoline compounds have been approved in therapy as antimicrobial, local anaesthetic, antipsychotic, and anticancer drugs. In drug discovery, indeed, over the last few years, an increase in the publication of papers and patents about quinoline derivatives possessing antiproliferative properties has been observed. This trend can be justified by the versatility and accessibility of the quinoline scaffold, from which new derivatives can be easily designed and synthesized. Within the numerous quinoline small molecules developed as antiproliferative drugs, this review is focused on compounds effective on c-Met, VEGF (vascular endothelial growth factor), and EGF (epidermal growth factor) receptors, pivotal targets for the activation of important carcinogenic pathways (Ras/Raf/MEK and PI3K/AkT/mTOR). These signalling cascades are closely connected and regulate the survival processes in the cell, such as proliferation, apoptosis, differentiation, and angiogenesis. The antiproliferative biological data of remarkable quinoline compounds have been analysed, confirming the pivotal importance of this ring system in the efficacy of several approved drugs. Furthermore, in view of an SAR (structure-activity relationship) study, the most recurrent ligand–protein interactions of the reviewed molecules are summarized

    Ion condensation on charged patterned surfaces

    Full text link
    We study ion condensation onto a patterned surface of alternating charges. The competition between self-energy and ion-surface interactions leads to the formation of ionic crystalline structures at low temperatures. We consider different arrangements of underlying ionic crystals, including single ion adsorption, as well as the formation of dipoles at the interface between charged domains. Molecular dynamic simulation illustrates existence of single and mixed phases. Our results contribute to understanding pattern recognition, and molecular separation and synthesis near patterned surfaces.Comment: 3 figure

    Off-target-based design of selective hiv-1 protease inhibitors

    Get PDF
    The approval of the first HIV-1 protease inhibitors (HIV-1 PRIs) marked a fundamental step in the control of AIDS, and this class of agents still represents the mainstay therapy for this illness. Despite the undisputed benefits, the necessary lifelong treatment led to numerous severe side-effects (metabolic syndrome, hepatotoxicity, diabetes, etc.). The HIV-1 PRIs are capable of interacting with “secondary” targets (off-targets) characterized by different biological activities from that of HIV-1 protease. In this scenario, the in-silico techniques undoubtedly contributed to the design of new small molecules with well-fitting selectivity against the main target, analyzing possible undesirable interactions that are already in the early stages of the research process. The present work is focused on a new mixed-hierarchical, ligand-structure-based protocol, which is centered on an on/off-target approach, to identify the new selective inhibitors of HIV-1 PR. The use of the well-established, ligand-based tools available in the DRUDIT web platform, in combination with a conventional, structure-based molecular docking process, permitted to fast screen a large database of active molecules and to select a set of structure with optimal on/off-target profiles. Therefore, the method exposed herein, could represent a reliable help in the research of new selective targeted small molecules, permitting to design new agents without undesirable interactions

    Role of PatAB Transporter in Efflux of Levofloxacin in Streptococcus pneumoniae

    Get PDF
    PatAB is an ABC bacterial transporter that facilitates the export of antibiotics and dyes. The overexpression of patAB genes conferring efflux-mediated fluoroquinolone resistance has been observed in several laboratory strains and clinical isolates of Streptococcus pneumoniae. Using transformation and whole-genome sequencing, we characterized the fluoroquinolone-resistance mechanism of one S. pneumoniae clinical isolate without mutations in the DNA topoisomerase genes. We identified the PatAB fluoroquinolone efflux-pump as the mechanism conferring a low-level resistance to ciprofloxacin (8 ”g/mL) and levofloxacin (4 ”g/mL). Genetic transformation experiments with different amplimers revealed that the entire patA plus the 5'-terminus of patB are required for levofloxacin-efflux. By contrast, only the upstream region of the patAB operon, plus the region coding the N-terminus of PatA containing the G39D, T43A, V48A and D100N amino acid changes, are sufficient to confer a ciprofloxacin-efflux phenotype, thus suggesting differences between fluoroquinolones in their binding and/or translocation pathways. In addition, we identified a novel single mutation responsible for the constitutive and ciprofloxacin-inducible upregulation of patAB. This mutation is predicted to destabilize the putative rho-independent transcriptional terminator located upstream of patA, increasing transcription of downstream genes. This is the first report demonstrating the role of the PatAB transporter in levofloxacin-efflux in a pneumoccocal clinical isolate.This research was funded by Ministerio de Economía y Competitividad [grant BIO2017-82951-R] and Ministerio de Ciencia e Innovación, la Agencia y el Fondo Europeo de Desarrollo Regional (MCIN/AEI/10.13039/501100011033/FEDER, UE) [grant PID2021-124738OB-100].S

    Targeting SARS-CoV-2 Main Protease for Treatment of COVID-19: Covalent Inhibitors Structure-Activity Relationship Insights and Evolution Perspectives

    Get PDF
    The viral main protease is one of the most attractive targets among all key enzymes involved in the SARS-CoV-2 life cycle. Covalent inhibition of the cysteine145 of SARS-CoV-2 MPRO with selective antiviral drugs will arrest the replication process of the virus without affecting human catalytic pathways. In this Perspective, we analyzed the in silico, in vitro, and in vivo data of the most representative examples of covalent SARS-CoV-2 MPRO inhibitors reported in the literature to date. In particular, the studied molecules were classified into eight different categories according to their reactive electrophilic warheads, highlighting the differences between their reversible/irreversible mechanism of inhibition. Furthermore, the analyses of the most recurrent pharmacophoric moieties and stereochemistry of chiral carbons were reported. The analyses of noncovalent and covalent in silico protocols, provided in this Perspective, would be useful for the scientific community to discover new and more efficient covalent SARS-CoV-2 MPRO inhibitors

    Assessment of the influence of electric arc furnace slag as a non-conventional filler for Nitrile Butadiene Rubber

    Get PDF
    Reinforcement of polymers by the addition of particles filler is a complex phenomenon that depends mainly on the hydrodynamic effect and a complex interplay between polymer, filler, and interfacial region. Mineral fillers are usually adopted as low-cost extenders due to their lower cost. In this study, the influence of a waste material such as electric arc furnace steel slag is assessed as filler for Nitrile-Butadiene Rubber following experimental procedures and analytical calculations adopted for traditional fillers. It was found that the slag content affects the static and the dynamic properties by increasing the material's capability to storage and dissipate energy. In addition to an important contribution of the hydrodynamic effect, the presence of an increasing immobilized rubber fraction around the slag particles (quantified by a differential scanning calorimetry analysis) plays a central role. The slag stiffens the NBR composite; the increase of static tensile and dynamic shear storage moduli was found to be consistent with the Halpin-Tsai and Guth-Gold prevision models respectively. Moreover, the non-linear dynamic behavior was found to be well-fitted by the Kraus equation models. The reinforcing ability of the slag particles as filler was confirmed by the negative slope of the Kraus plot on swelling data

    One pot-like regiospecific access to 1-aryl-1H-pyrazol-3(2H)-one derivatives and evaluation of the anticancer activity

    Get PDF
    A set of variously substituted 1-arylpyrazol-3-one derivatives, including the di-ortho-aryl substituted ones, was synthesized as new potential anticancer compounds. To fulfill this aim, herein a regiospecific synthesis was proposed utilizing a new revisited one pot procedure, starting from commercial anilines and easily accessible 2,5-dimethyl-furan-3-one. In the course of the sequential ordered steps, in some cases, a nitro group displacement by chlorine took place to a minor extent. The in vitro screening against the full panel of ~60 human cancer cell lines (NCI) showed a moderate, but promising selective antiproliferative activity against the UO31 renal tumor cell line, only in compounds with the introduction on the phenyl moiety of a -CF3 or two Cl groups

    Thesaurus: un database per il patrimonio culturale sommerso

    Get PDF
    Thesaurus Project aims at promoting the knowledge of the underwater cultural heritage, ancient and modern, through the application of several typologies of tools: underwater autonomous vehicles, which will be able to explore the sea bottom in teams communicating with each other; a database, which will be useful to store and manage all the information referring to archaeological or historical objects, shipwrecks and sites. This paper aims to explain the logic structure of the database indicating the particular needs of the research, the different typologies of items which have to be managed (archaeological and historical objects; ancient, medieval or modern shipwrecks; underwater sites; written or figurative sources, etc.), the relation with other similar databases and projects. The main task of this part of Thesaurus is to plan and organize an IT system, which will allow archaeologists to describe information in detail, in order to make an efficient managing and retrieving data system available

    Multiscale understanding of tricalcium silicate hydration reactions

    Get PDF
    Tricalcium silicate, the main constituent of Portland cement, hydrates to produce crystalline calcium hydroxide and calcium-silicate-hydrates (C-S-H) nanocrystalline gel. This hydration reaction is poorly understood at the nanoscale. The understanding of atomic arrangement in nanocrystalline phases is intrinsically complicated and this challenge is exacerbated by the presence of additional crystalline phase(s). Here, we use calorimetry and synchrotron X-ray powder diffraction to quantitatively follow tricalcium silicate hydration process: i) its dissolution, ii) portlandite crystallization and iii) C-S-H gel precipitation. Chiefly, synchrotron pair distribution function (PDF) allows to identify a defective clinotobermorite, Ca11Si9O28(OH)2.8.5H2O, as the nanocrystalline component of C-S-H. Furthermore, PDF analysis also indicates that C-S-H gel contains monolayer calcium hydroxide which is stretched as recently predicted by first principles calculations. These outcomes, plus additional laboratory characterization, yielded a multiscale picture for C-S-H nanocomposite gel which explains the observed densities and Ca/Si atomic ratios at the nano- and meso- scales.This work has been supported by Spanish MINECO through BIA2014-57658-C2-2-R, which is co-funded by FEDER, BIA2014-57658-C2-1-R and I3 (IEDI-2016-0079) grants. We also thank CELLS-ALBA (Barcelona, Spain) for providing synchrotron beam time at BL04-MSPD beamline

    Antiproliferative properties and g-quadruplex-binding of symmetrical naphtho[1,2-b:8,7-b’]dithiophene derivatives

    Get PDF
    Background: G-quadruplex (G4) forming sequences are recurrent in telomeres and promoter regions of several protooncogenes. In normal cells, the transient arrangements of DNA in G-tetrads may regulate replication, transcription, and translation processes. Tumors are character-ized by uncontrolled cell growth and tissue invasiveness and some of them are possibly mediated by gene expression involving G-quadruplexes. The stabilization of G-quadruplex sequences with small molecules is considered a promising strategy in anticancer targeted therapy. Methods: Molecular virtual screening allowed us identifying novel symmetric bifunctionalized naphtho[1,2-b:8,7-b’]dithiophene ligands as interesting candidates targeting h-Telo and c-MYC G-quadruplexes. A set of unexplored naphtho-dithiophene derivatives has been synthesized and biologically tested through in vitro antiproliferative assays and spectroscopic experiments in solution. Results: The analysis of biological and spectroscopic data highlighted noteworthy cytotoxic effects on HeLa cancer cell line (GI50 in the low ”M range), but weak interactions with G-quadruplex c-MYC promoter. Conclusions: The new series of naphtho[1,2-b:8,7-b’]dithiophene derivatives, bearing the pharmacophoric assump-tions necessary to stabilize G-quadruplexes, have been designed and successfully synthesized. The interesting antiproliferative results supported by computer aided rational approaches suggest that these studies are a significant starting point for a lead optimization process and the isolation of a more efficacious set of G-quadruplexes stabilizers
    • 

    corecore